数学之美–高斯拉普拉斯在图像处理上的应用

Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用。该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下:

由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感。于是,首先对图像进行高斯卷积滤波【高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.】进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的鲁棒性,如此,拉普拉斯高斯算子Log(Laplace of Gaussian)就诞生了。

0

数学之美—-卷积在图像处理中的应用

卷积是一种积分运算,卷积在数据处理中用来平滑,卷积有平滑效应和展宽效应.

卷积是一种积分运算,积分就有平滑的作用,由卷积得到的函数,比卷积前的两个函数都要“光滑”,相当于一个高通滤波器,可以滤除高频噪声
图像处理中的卷积与上面的定义稍微有一点不同。用一个模板和一幅图像进行卷积,对于图像上的一个点,让模板的原点和该点重合,然后模板上的点和图像上对应的点相乘,然后各点的积相加,就得到了该点的卷积值。对图像上的每个点都这样处理。由于大多数模板都是对称的,所以模板不旋转。

把一个点的像素值用它周围的点的像素值的加权平均代替。

0