数学之美–高斯拉普拉斯在图像处理上的应用

Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用。该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下:

由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感。于是,首先对图像进行高斯卷积滤波【高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.】进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声和离散点的鲁棒性,如此,拉普拉斯高斯算子Log(Laplace of Gaussian)就诞生了。

Leave a Reply